which path does electricity take when conducted thru bodily tissues

BR-549

Joined Sep 22, 2013
4,928
There are ion conductive channels galore, and various, changing, charge densities all over the body.

Even an external field can re-configure your electrical composition.

Your body is an immense electrical and chemical network.

And don't forget, chemistry is charge transfer, electricity is charge rotation.

Chemistry and electronics are brother and sister.
 

nsaspook

Joined Aug 27, 2009
13,079
I would guess it depends on the type and power of the voltage source and how the all tissue in the current path handle the thermal energy generated.

I've seen the effects of a high voltage/hgh power DC and RF burn from the finger tips to the forearm on a person repairing a 2-30MHz tube amplifier at full power. There was a cauterized to carbon interior channel following the veins and arteries (I don't remember seeing any blood flowing from the burns, only rancid smelling smoke) to the exit point of the forearm and very extensive arc damage to the tissue from the thumb, palm entry point and forearm exit point. It was his good luck we had a surgical team on-board for the Marines as they saved arm with most of the hand function after we made sure he was alive and stable after the shock.
 
Last edited:

nsaspook

Joined Aug 27, 2009
13,079
I would guess it depends on the type and power of the voltage source and how the all tissue in the current path handle the thermal energy generated.

I've seen the effects of a high voltage/hgh power DC and RF burn from the finger tips to the forearm on a person repairing a 2-30MHz tube amplifier at full power. There was a cauterized to carbon interior channel following the veins and arteries (I don't remember seeing any blood flowing from the burns, only rancid smelling smoke) to the exit point of the forearm and very extensive arc damage to the tissue from the thumb, palm entry point and forearm exit point. It was his good luck we had a surgical team on-board for the Marines as they saved arm with most of the hand function after we made sure he was alive and stable after the shock.
This is the person later after surgery with the bandage on the right hand looking at the same type of amplifier that almost killed him.
 

nsaspook

Joined Aug 27, 2009
13,079
Circuits involving thermionic valves are dangerous with their high voltage even the battery powered ones have high voltage.

They are also large due to transformers and the tubes themselves are large and can climb to really high temperatures.



Which has to be veins and arteries since they are uniform structures filled conductive medium and they interconnect forming a circuit depending on the electrode application.
The veins and arteries don't have zero impedance so some of the current flow is also in connecting tissue because there is an electric potential across all the body mass just like a parallel resistor circuit.
res50.gif
 

SamR

Joined Mar 19, 2019
5,031
And then there are the flash burns from plasma arcs without even coming into contact with a conductor. It was standard practice in substations and motor control rooms to ALWAYS shut the compartment door of the breaker/starter before energizing the circuit just in case. And NEVER stand in front of the compartment when doing so.
 
Last edited:

WBahn

Joined Mar 31, 2012
29,976
It's always the path of least resistance.
This tends to be very misleading for many of the people that ask the kind of question for which this answer is offered.

They frequently walk away "knowing" that if the current has a choice of a 100 Ω path or a 101 Ω path that it will ALL take the 100 Ω path since that's the path of least resistance.
 

WBahn

Joined Mar 31, 2012
29,976
Which has to be veins and arteries since they are uniform structures filled conductive medium and they interconnect forming a circuit depending on the electrode application.
Even if that's true, you are making the very mistake I cautioned about in my prior post.

The muscles and fat tissues are hardly non-conductive.

But let's, purely for the sake of discussion, say that a person's blood has only one-tenth the resistivity of their muscle and fat tissues. Let's further stipulate that the resistance encountered in getting the current through the blood vessel walls is negligible. What fraction of the cross section of their arm, for instance, is blood vessels? Let's say it's 5%. That means that the overall resistance of their muscle/fat tissues is about half that of their blood vessels and so about 2/3 of the current will go through the tissue and about 1/3 through the vessels.
 

WBahn

Joined Mar 31, 2012
29,976
There is a gradient not a single channel but the current gradient likely flows much more thru veins and arteries than thru other tissues.
Why? Based on what?

The current density may well be higher in the blood vessels than the other tissues. That does NOT translate to a higher fraction of the total current doing so. Additional information is needed to explore whether or not that's the case.
 

SamR

Joined Mar 19, 2019
5,031
Let's take a plate of nonconductive material. On each end of the plate attach a copper bus bar. Splash the plate with semi conductive paint. In a very random fashion such that there is not an even coat of paint. Attach power and ground to the opposite bus bars and crank up the voltage. What is going to happen? I suspect at low voltage there will be somewhat even conductance across the plate, but as the voltage increases the current will seek the less resistive path? Until it incinerates that particular path and finds a new one.
 
Last edited:

SamR

Joined Mar 19, 2019
5,031
-Most of the current in a body is conducted by blood anyways regardless of were it is, tissues are immersed in it.
Most of the current in the body is conducted by the electrochemical neurons and synapses of the nervous system which is one reason electrical shock is so damaging the nervous system. Without the electrical stimulation of the musculature the body cannot move. Or the sensory system or the brain or any other organ system work. It's also the reason you "freeze up" when being electrocuted. Military electrical shops used to have wooden walking canes in them to be used as a nonconductive hook to grab someone being electrocuted and pull them off the hot circuit.
 

WBahn

Joined Mar 31, 2012
29,976
Let's take a plate of nonconductive material. On each end of the plate attach a copper bus bar. Splash the plate with semi conductive paint. In a very random fashion such that there is not an even coat of paint. Attach power and ground to the opposite bus bars and crank up the voltage. What is going to happen? I suspect at low voltage there will be somewhat even conductance across the plate, but as the voltage increases the current will seek the less resistive path? Until it incinerates that particular path and finds a new one.
Nope. Until you have so much current that you start changing the properties of the paint, the distribution of current is independent of the amount of current.

Apply 10 V across the parallel combination of a 1 Ω resistor and a 9 Ω resistor. You will have a total of 10 A flowing with 10% of it in the larger resistor and 90% of it in the smaller. Now make it 10 mV. You will have a total of 10 mA, but the distribution will be the same. As you crank the voltage up eventually you will cause changes in the resistance values -- but the current distribution will then simply be what it is based on the new values.
 

SamR

Joined Mar 19, 2019
5,031
Yeah I kinda had parallel resistors in back of my mind. Oh well I'm used to how my foot tastes by now. The noticeable effect would be the least resistant path burning up first, but it would all be passing current.
 

jpanhalt

Joined Jan 18, 2008
11,087
Sorry that reference to Bikson's review (post #6) didn't work. I almost always check links I post. For sure, the one time I didn't do that, it was broken.

Try this link: https://www.researchgate.net/public...ards_associated_with_exposure_to_low_voltages

Here is a quote from the relevant section:
Current Path
The body acts as a volume conductor. The
points of current entry and exit are important
because 1) the current density will be highest nearest
these points and 2) the direction of current flow
(electric field) along excitable tissue will affect
electric shock efficacy (Reilly 1998).
When current is applied at two points on the
surface of the body only a small fraction of the total
current flows through the heart (Webster 1998).
Freiberger (1934) reported that for hand-to-feet and
foot-to-foot electrode contacts less then 8.5% and
0.4% (respectively) of the net current would travel
through the heart.
Leibovici et al. (1995) reported that current
passing through the thorax is associated with 60% of
electrocutions, whereas for current passing from leg
to leg it is 20%. These numbers do not address the
over-all (including not fatal) chances of exposure at
each geometry nor do they distinguish across
high/low voltage exposure levels. Leibovici et al.
(1995) note that though current density will be
higher across limbs (due to smaller cross sectional
area), the presence of vital organs in the torso
accounts for lethality of trans-thoracic currents (see
Mechanisms of injury).
Camps et al. (1976) concluded that for
ventricular fibrillation the most dangerous current
path is left arm-to-opposite leg; from arm-to-arm
being 60% less lethal. Bailey et al. (2001) found a
majority of victims died from current flow from
upper-to-lower extremities. In contrast, Alexander
(1941) noticed that more victims die from current
flow from upper-to-upper extremities. As noted
above, these findings would be more relevant if the
prevalence of the current exposure pathway,
including survivors, was known. The role of current
path has been examined systematically in dogs
(APPENDIX).
John
 

Dodgydave

Joined Jun 22, 2012
11,284
As the Skin is the biggest organ in the body, usually it conducts the most electricity under an electriic shock, being the lowest resitstive path...
 
Top