
Good evening,
The circuit implements only "active high" switches, and I am asked to find the (positive) logic function for the OUT node. The paths to ground I found were when each of these terms is HI voltage (transistor is "on" and switch is a connected circuit): EFG, BCD, ABC, ACE, CDE, BFG. In the truth table, any minterms with these combinations of HI voltage, logical 1, will have a LO voltage for OUT, or logical 0 in the truth table. And that is all of the ways to get LO voltage at the output. Is that correct?
I found the following minterms which produce HI voltage or logical 1 at OUT, but am unsure how to make the K-map for 7 variables to simplify, so I'm working right now on using Boolean identities to simplify the logical function. (I couldn't figure out how to post the Excel spreadsheet with all 128 minterms). Basically, I would like to know if my approach is sound or if there is a shortcut method to get the logical function for OUT.
OUT
= A’B’C’D’E’F’G’+A’B’C’D’E’F’G +A’B’C’D’E’FG’ +A’B’C’D’E’FG
+ A’B’C’D’EF’G’ +A’B’C’D’EF’G +A’B’C’D’EFG’ +A’B’C’DE’F’G’
+A’B’C’DE’F’G +A’B’C’DE’FG’ +A’B’C’DE’FG +A’B’C’DEF’G’
+A’B’C’DEF’G +A’B’C’DEFG’ +A’B’CD’E’F’G’ +A’B’CD’E’F’G
+A’B’CD’E’FG’ +A’B’CD’E’FG +A’B’CD’EF’G’ +A’B’CD’EF’G
+A’B’CD’EFG’ +A’B’CDE’F’G’ +A’B’CDE’F’G +A’B’CDE’FG’
+A’B’CDE’FG +A’BC’D’E’F’G’ +A’BC’D’E’F’G +A’BC’D’E’FG’
+A’BC’D’EF’G’ +A’BC’D’EF’G +A’BC’D’EFG’ +A’BC’DE’F’G’
+A’BC’DE’F’G +A’BC’DE’FG’ +A’BC’DEF’G’ +A’BC’DEF’G
+A’BC’DEFG’ +A’BCD’E’F’G’ +A’BCD’E’F’G +A’BCD’E’FG’
+A’BCD’EF’G’ +A’BCD’EF’G +A’BCD’EFG’ +AB’C’D’E’F’G’
+AB'C'D'E'F'G +AB’C’D’E’FG’ +AB’C’D’E’FG +AB’C’D’EF’G’
+AB’C’D’EF’G +AB’C’D’EFG’ +AB’C’DE’F’G’ +AB’C’DE’F’G
+AB’C’DE’FG’+AB’C’DE’FG +AB’C’DEF’G’ +AB’C’DEF’G
+AB’C’DEFG’ +AB’CD’E’F’G’ +AB’CD’E’F’G +AB’CD’E’FG’
+AB’CD’E’FG +AB’CDE’F’G’ +AB’CDE’F’G +AB’CDE’FG’
+AB’CDE’FG +ABC’D’E’F’G’ +ABC’D’E’F’G +ABC’D’E’FG’
+ABC’D’EF’G’+ABC’D’EF’G +ABC’D’EFG’ +ABC’DE’F’G’
+ABC’DE’F’G +ABC’DE’FG’ +ABC’DEF’G’ +ABC’DEF’G
+ABC’DEFG’
Thanks, and I appreciate the advice.
Last edited: