LIGO gravity waves using interferometer

Thread Starter

reerer

Joined Apr 1, 2016
71
In 2016, the LIGO collaboration announced the detection of gravity waves produced by the merging of two black holes 1.3 billion light years away. During the merging of the black holes that lasted less than one second, the gravity wave signal increases in frequency from 35 to 250 Hz and produced a strain (dL/L) of 10^-20 on the interferometer's armature but using an interferometer armature length of L = 10 meters, the change in the length of the interferometer length dL, caused by the gravity wave interaction, would be approximately dL = 10^-19 m which is 10,000 time smaller than the diameter of an electron which proves the LIGO gravity wave experiment is physically invalid.
 
Last edited:

nsaspook

Joined Aug 27, 2009
13,081
In 2016, the LIGO collaboration announced the detection of gravity waves produced by the merging of two black holes 1.3 billion light years away. During the merging of the black holes that lasted less than one second, the gravity wave signal increases in frequency from 35 to 250 Hz and produced a strain (dL/L) of 10-20 on the interferometer's armature but using an interferometer armature length of L = 10 meters, the change in the length of the interferometer length dL, caused by the gravity wave interaction, would be approximately dL = 10-19 m which is 10,000 time smaller than the diameter of an electron which proves the LIGO gravity wave experiment is physically invalid.
 

Thread Starter

reerer

Joined Apr 1, 2016
71
Are gravity waves sound waves? 35 to 250 hz are frequencies of sound yet sound does not propagate in celestial vacuum of approximately 1e-13 atmospheres or one tenth of a nanoatmosphere! What do you think is going on? Someone is stupid. Me or them.


Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Beker, M. G.; Belczynski, K.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Blomberg, A.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzynski, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Corda, C.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J. P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dari, A.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Degallaix, J.; del Prete, M.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Devanka, P.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J. C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Fournier, J. D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.;
 
Last edited:

Thread Starter

reerer

Joined Apr 1, 2016
71
Hey, nanospook, have you ever read the book "Memories of an economic hit man" by John Perkins?.
 
Last edited:

Thread Starter

reerer

Joined Apr 1, 2016
71
Sound waves do not propagate in vacuum of celestial space, ask NASA. Maybe not since all their rockets blow up on the pad. Is the USSR number one, now? Great job, the Russians are now technologically superior to the USA since you believe in this inane gravity wave experiment, and couldn't reach the moon if your collective lives depended on it. How embarrassing but maybe the US is following the path of Jesus. Do you hear the thunder, Spock?


.
 
Last edited:

Thread Starter

reerer

Joined Apr 1, 2016
71
Gravity waves that have a frequency range between 10-7 to 104 Hz and propagate at the velocity of light proves electromagnetic gravity waves have never been experimentally detected since a gravity wave with the frequency of 10-7 Hz forms a wavelength of 1015 meters! In 2016, the LIGO collaboration announced the detection of gravity waves produced by the merging of two black holes 1.3 billion light years away. During the merging of the black holes that lasted less than one second, the gravity wave signal increases in frequency from 35 to 250 Hz and produced a strain (dL/L = 10-21) on the interferometer's armature but using an interferometer armature length of L = 1 meters, the change in the length of the interferometer length dL, caused by the gravity wave interaction, would be approximately dL = 10-20 m which is 1,000,000 times smaller than the diameter of an electron which proves the LIGO gravity wave experiment is physically invalid. Furthermore, the Hubble telescope cannot view the lunar lander on the surface of the moon; therefore, it is unlikely that the Hubble can view a black hole, that has the approximate diameter of the sun at a distance of 1.3 billion light years from the earth.
 
Top