Attached to this post is a LTspice simulation of a high-pass (Fc = 400 Hz) and a low-pass (Fc = 800 Hz) 3rd-order active filters with op amps. My question is whether or not it is possible to calculate Q of the filters based on the values of resistance and capacitance of the filters.
Based on what is advised in the book Op Amps for Everyone by Mancini, as I am interested in getting as low of a Q as possible, I simulated a Bessel 3rd order unity gain high-pass filter and found that with respect to frequency one octave below the cut-off frequency, attenuation is only -12 dB when it should be -18 dB given that it is supposed to be 3rd order. I would prefer the design from Mancini as I know in advance that it has the lowest possible Q, but it also needs to truly be a 3rd order filter.
If anyone knows the answer to this I will be appreciative.
Thanks in advance,
Pete
Based on what is advised in the book Op Amps for Everyone by Mancini, as I am interested in getting as low of a Q as possible, I simulated a Bessel 3rd order unity gain high-pass filter and found that with respect to frequency one octave below the cut-off frequency, attenuation is only -12 dB when it should be -18 dB given that it is supposed to be 3rd order. I would prefer the design from Mancini as I know in advance that it has the lowest possible Q, but it also needs to truly be a 3rd order filter.
If anyone knows the answer to this I will be appreciative.
Thanks in advance,
Pete
Attachments
-
4.7 KB Views: 32