I am constructing binary words from a given voltage, using successive approximation. What happens when the voltage is the SAME as a bit value(ie not greater, or less than).Hope that makes sense! Thanks.
A quick look at Analog Devices tutorials shows a `greater than or equal to` sign, which solves my problem! Thanks for the pointer.Hi,
If you get the spec sheet for one, the manufacturer usually does a good job of explaining the theory behind the A to D's operation. Analog Devices makes a zillion of them.
Having the two inputs of a comparator the same is pretty difficult to achieve in practice still one must account for the possibility. Ron H has hit the nail on the head with the assessment of the comparator being in terms of a hysteresis characteristic. The comparator has two thresholds VTL and VTH which define the low and high input voltages respectively required to trigger a switch at the output. In fact in the context of ADCs a comparator without this hysteresis characteristic is pretty useless. Consider the situation with high-frequnecy noise (say from interference) imposed on the low-frequency signal you are comparing to some datum signal. If there were no hysteresis characteristic (i.e. VTL = VTH), then at the the theshold point the output of the comparator would fluctuate wildly in line with the high-frequency noise as it fluctuated around the threshold point, thus making the output reading null. In this sense the comparator is performing a high-frequnecy filtering function.I am constructing binary words from a given voltage, using successive approximation. What happens when the voltage is the SAME as a bit value(ie not greater, or less than).Hope that makes sense! Thanks.
Thread starter | Similar threads | Forum | Replies | Date |
---|---|---|---|---|
Up for Review: Successive Approximation Register ADC | AAC Contributors Forum | 0 | ||
D | Successive Approximation ADC | Homework Help | 6 | |
K | 4-bit successive approximation | General Electronics Chat | 2 | |
X | Successive Approximation ADC binary output | Analog & Mixed-Signal Design | 1 | |
S | DAC ADC Successive Approximation | Homework Help | 5 |
by Wes Brodsky
by Jake Hertz
by Luke James