Find the power consumed by the 20 ohm resistor using the mesh-current technique.
So, here's what I got
Current 1-
\( 135 + 2I_1 +20(I_1+I_2) + 3(I_1+I_3) = 0\)
\( 25I_1 + 20I_2 + 3I_3 = -135 \)
Current 2-
\( 10i_0 + I_2 + 20(I_2+I_1) + 4(I_2-I_3) = 0\)
\( I_1+I_3 = i_0 \)
\( 10(I_1 + I_3) + 20(I_2+I_1) + 4(I_2-I_3) = 0 \)
\( 30I_1 + 24I_2 +6I_3 = 0 \)
Current 3-
\(5I_3 + 4(I_3 - I_2) + 3(I_1+I_3) = 0 \)
\(5I_1 - 4I_2 + 12I_3 = 0\)
25 20 3 | -135
30 24 6 | 0
5 -4 12 | 0
I wind up with
I1 = -87.75
I2 = 92.8125
I3 = 67.5.
But to find the branch current, you have to sum I1 and I2 together, which would give me a total current of 5.0625 running through that branch. Using my power expression, p=vi^2, I'm getting 512.57 W....according to the back of the book, I'm looking for 259.2 W. Do you see any errors in there?
Thank you guys for your help!
The final, correct equations are-
Mesh 1
\( 135 + 2I_1 +20(I_1+I_2) + 3(I_1+I_3) = 0\)
\( 25I_1 + 20I_2 + 3I_3 = -135 \)
Mesh 2
\( 10i_0 + I_2 + 20(I_2+I_1) + 4(I_2-I_3) = 0\)
\( I_1+I_3 = i_0 \)
\( 10(I_1 + I_3) + I_2 +20(I_2+I_1) + 4(I_2-I_3) = 0 \)
\( 30I_1 + 25I_2 +6I_3 = 0 \)
Mesh 3
Current 3-
\(5I_3 + 4(I_3 - I_2) + 3(I_1+I_3) = 0 \)
\(3I_1 - 4I_2 + 12I_3 = 0\)
The final matrix would look like...
25 20 3 | -135
30 25 6 | 0
3 -4 12 | 0

So, here's what I got
Current 1-
\( 135 + 2I_1 +20(I_1+I_2) + 3(I_1+I_3) = 0\)
\( 25I_1 + 20I_2 + 3I_3 = -135 \)
Current 2-
\( 10i_0 + I_2 + 20(I_2+I_1) + 4(I_2-I_3) = 0\)
\( I_1+I_3 = i_0 \)
\( 10(I_1 + I_3) + 20(I_2+I_1) + 4(I_2-I_3) = 0 \)
\( 30I_1 + 24I_2 +6I_3 = 0 \)
Current 3-
\(5I_3 + 4(I_3 - I_2) + 3(I_1+I_3) = 0 \)
\(5I_1 - 4I_2 + 12I_3 = 0\)
25 20 3 | -135
30 24 6 | 0
5 -4 12 | 0
I wind up with
I1 = -87.75
I2 = 92.8125
I3 = 67.5.
But to find the branch current, you have to sum I1 and I2 together, which would give me a total current of 5.0625 running through that branch. Using my power expression, p=vi^2, I'm getting 512.57 W....according to the back of the book, I'm looking for 259.2 W. Do you see any errors in there?
Thank you guys for your help!
The final, correct equations are-
Mesh 1
\( 135 + 2I_1 +20(I_1+I_2) + 3(I_1+I_3) = 0\)
\( 25I_1 + 20I_2 + 3I_3 = -135 \)
Mesh 2
\( 10i_0 + I_2 + 20(I_2+I_1) + 4(I_2-I_3) = 0\)
\( I_1+I_3 = i_0 \)
\( 10(I_1 + I_3) + I_2 +20(I_2+I_1) + 4(I_2-I_3) = 0 \)
\( 30I_1 + 25I_2 +6I_3 = 0 \)
Mesh 3
Current 3-
\(5I_3 + 4(I_3 - I_2) + 3(I_1+I_3) = 0 \)
\(3I_1 - 4I_2 + 12I_3 = 0\)
The final matrix would look like...
25 20 3 | -135
30 25 6 | 0
3 -4 12 | 0