We have an upcoming lab where we have to design a F & C degrees output thermometer based off of the LM34 chip (10mV / degree Fahrenheit output). Here's the design I came up with to convert to Celsius. Pretty good, eh?

The formula for Fahr --> Cel conversion is:
(5/9) * (Fdeg - 32)
Since the chip has 10mV / deg Fahr, I combined a 1/10th * 5/9th gain to be a 5/90th gain. This gain will display the temperature exactly when the VOM is in mV mode. Used a differential amplifier to subtract the Fahrenheit voltage from a constant .320V (the 32 in the equation). And the differential amplifier has the Fahrenheit on the positive input, yielding a positive result (unless a negative temperature, negative voltage).
I have a question though. Is there any better method of getting a precise .320V on the negative input? The voltage divider, while easy and practical, is not giving me exactly the amount I need. I'm trying to NOT use a separate voltage source as this will require more components. I also noticed that the voltage divider on the - input is affecting the Ri value there (the parallel combination comes out to .979k ohms, + 89k ~= 90k). Thanks.

The formula for Fahr --> Cel conversion is:
(5/9) * (Fdeg - 32)
Since the chip has 10mV / deg Fahr, I combined a 1/10th * 5/9th gain to be a 5/90th gain. This gain will display the temperature exactly when the VOM is in mV mode. Used a differential amplifier to subtract the Fahrenheit voltage from a constant .320V (the 32 in the equation). And the differential amplifier has the Fahrenheit on the positive input, yielding a positive result (unless a negative temperature, negative voltage).
I have a question though. Is there any better method of getting a precise .320V on the negative input? The voltage divider, while easy and practical, is not giving me exactly the amount I need. I'm trying to NOT use a separate voltage source as this will require more components. I also noticed that the voltage divider on the - input is affecting the Ri value there (the parallel combination comes out to .979k ohms, + 89k ~= 90k). Thanks.