# Poles with Increasing Phase

Discussion in 'Homework Help' started by jegues, Feb 2, 2014.

1. ### jegues Thread Starter Well-Known Member

Sep 13, 2010
735
43
I'm having trouble understanding the bode plot for,

$G(s) = \frac{1}{2s-1}$

Usually when I am drawing bode plots for either real poles or zeros, I simply solve for the break frequency knowing that a zero/pole will give me a +/-20dB/decade asymptote after the break frequency on my magnitude plot, and a +/-90° phase shift across two decades, with the center (i.e. the +/-45° point) at my break frequency on my phase plot.

This has always worked when I have,

$(s+a) \quad a>0$

but it seems to change when,

$(s - a) \quad a>0 \quad \text{or, } \quad (-s+a) \quad a>0$

I can't wrap my head around why a pole has an increasing phase that starts at -180°. I was expecting a phase decrease from 0° to -90°.

Can someone explain what I am misunderstanding?

File size:
40.9 KB
Views:
9
2. ### t_n_k AAC Fanatic!

Mar 6, 2009
5,448
783
Perhaps if you re-cast the transfer function in the complex frequency domain

$G_{(j \omega)}=\frac{1}{(-1+j2\omega)}$

Then rationalise the function ....

$G_{(j \omega)}=-\frac{1}{(1+4 {\omega}^2)}-j \frac{2\omega}{(1+4{\omega}^2)}$

What is the initial phase as ω approaches zero?

3. ### LvW Active Member

Jun 13, 2013
674
100
jegues, do you realize that the pole is real and in the right half of the s-plane?
Thus, it belongs to an unstable non-realizable system.