Electromagnetic Radiation

Discussion in 'Physics' started by nanobyte, Nov 30, 2007.

  1. nanobyte

    Thread Starter Senior Member

    May 26, 2004
    118
    1
    I know that visible light is a form of electromagnetic radiation. It is made of photons. A photon is a packet of energy release by an electron when it is returning to a lower enery level or orbital after previously recieving the equivalent amount of energy that makes up the photon. My question is what are the other forms of radiations (radio waves, microwaves, x-rays, etc.) are made of? Are they made of photons too, but just with different amounts of energy?
     
  2. recca02

    Senior Member

    Apr 2, 2007
    1,211
    0
    yes,
    it is a packet of energy for all wavelengths of radiation radio waves,microwaves, etc.
    the energy of which is given by:
    E=h*frequency of radiation.

    h is Planck's constant.
     
  3. nanobyte

    Thread Starter Senior Member

    May 26, 2004
    118
    1
    So for example the photon of a x-ray would have more energy than the photon of visible light?
     
  4. omnispace

    Member

    Jul 25, 2007
    27
    0
    That's correct. The energy increases as the frequency increases and the wavelength decreases. So in order of increasing frequency we have:

    Radio waves
    Microwaves
    Infrared
    Visible Light
    Ultraviolet
    X-Rays
    Gamma rays

    These are all made of photons, but with different energy levels.
     
  5. recca02

    Senior Member

    Apr 2, 2007
    1,211
    0
    and we all know how dangerous uv rays, x-rays and gamma rays are because of their high energies.
     
  6. beenthere

    Retired Moderator

    Apr 20, 2004
    15,815
    282
    A lot of less-energetic photons can do damage, too. Microwave and strong radio frequency sources are pretty harmful.
     
  7. recca02

    Senior Member

    Apr 2, 2007
    1,211
    0
    one example which makes clear that photons of different frequency have different energies
    is the existence of threshold frequency of wave required for the photoelectric effect.
    this effect is one reason IIRC which proved that wave theory alone is not sufficient.
     
  8. Dave

    Retired Moderator

    Nov 17, 2003
    6,960
    144
    Typically when people think about the danger associated with EM radiation they think of the ionising capabilities of the EM radiation, and RF and microwaves are non-ionising. That said RF and microwave can be dangerous to certain parts of the body, for example the eyes, because the heating effect induced by RF or microwaves cannot be dissipated quick enough by the blood flowing from the eyes hence causing (often significant) damage.

    Dave
     
  9. jonkopp

    Member

    Jan 17, 2008
    15
    0
    So, when you're taught antenna and wave prorogation theory, why don't they just say that the antenna is emitting photons? I've gotten into arguments with instructors that were die-hard set on the notion that the radiated RF was electrons being transmitted. You'd think this could be spelled out a lot clearer in the curriculum being taught.
     
  10. jonkopp

    Member

    Jan 17, 2008
    15
    0
    Another question.

    If the wave length of the signal is measured as the completion of one full cycle of alternating states, then why is the measurement made perpendicular to the direction of travel? Wouldn't this be wave width?

    For example, the length of a wip antenna determines it's wavelength, but the direction of transmission is most strong perpendicular from the antenna(donut shaped). So for practical purposes you're measuring the wavelength of the signal traveling perpendicular from the antenna, but it's the perpendicular measurement that determines the wavelength.

    A better example might be the relationship with the measurement of the Fresnel zone radius for line of site communications. The width of the allowable transmitted path is strongly affected by the wavelength.

    What dimension of the wave is being measured here? Are the photons' fields expanding and collapsing, and what we're measuring is more along the lines of a spherical radius alternating is strength? Then why would lower frequencies, with less excitation of the photon, create a larger field than higher frequencies?
     
  11. uzair

    Active Member

    Dec 26, 2007
    110
    0
    For this matter, a medical guy should also give his opinion!;)
    The radiations of any type (if in excess) can be injurious to health.It is specially dangerous for skin and eyes.It can damage RBC's (Red Blood Cells).In other cells, it usually targets the genetic material, the chromosomes, thus causing changes in it, called mutations.Infact all genetics experiments employ X-Rays for getting "Mutants".
     
  12. scubasteve_911

    Senior Member

    Dec 27, 2007
    1,202
    1
    I'm confused, isn't there two models for light? One based upon photon emission and another based upon electromagnetic radiation?

    I seem to recall that the two models do not agree, but both are functional.

    Steve
     
  13. uzair

    Active Member

    Dec 26, 2007
    110
    0
    Yes there is a wave-particle duality in the case of light.The photons move so fast that they just appear to be a radiation of certain wavelength and energy.de-Broglie's hypothesis explains it

    Wavelength= h/mv
     
  14. Dave

    Retired Moderator

    Nov 17, 2003
    6,960
    144
    To quote a chapter I wrote a while back on dielectric heating:

    For the wave model you need to know:

    c = f\lambda

    And for the particle model you need to know:

    E = hf

    c = velocity of propagation in medium (typ. the speed of light if a vacuum)
    f = wave frequency
    h = Plancks constant
    E = Energy in single photon at frequency f

    Dave
     
  15. Dave

    Retired Moderator

    Nov 17, 2003
    6,960
    144
    Can you be a little clearer?

    Electromagnetic radiation (EM waves if you like) are defined as transverse, oscillatory, self-propagating wave in space comprised of orthogonal electric and magnetic-field components. Consider a plane wave, if the wave propagates into the z-direction, the E-field is in the x-direction and the H-field is in the y-direction (dependant on perspective). You measure the wavelength in the z-direction and E/H-field magnitudes in the x/y-direction.

    Dave
     
  16. thingmaker3

    Retired Moderator

    May 16, 2005
    5,072
    6
    I was reading James Burke just this afternoon... "On the other hand, sometimes light acts as if it were made up of particles. This was first noticed in1873, when a telegraph operator at the transatlantic terminal on the Irish Atlantic coast saw that his equipment was giving off electric current according to the amount of sunlight coming through the window. The more sun, the more current. In the evening no current was present at all. It turned out that the light was hitting selenium metal resistors, so the selenium was obviously giving off electricity in response to light."

    Burke then relates German experiments in the 1880's where color of light was shown to have no effect, only the intensity.

    Some wild-haired guy named "Albert" proposed that one could count the photons or measure the frequency, but not do both at the same time.
     
  17. Dave

    Retired Moderator

    Nov 17, 2003
    6,960
    144
    Sounds like Heisenberg, but wasn't that position and velocity.

    Dave
     
  18. beenthere

    Retired Moderator

    Apr 20, 2004
    15,815
    282
    I believe that Albert noted that the photoelectric effect was discontinuous, as if individual particles were exciting individual electrons, instead of a smooth effect from even illumination.
     
Loading...