Discrete Time Fourier Transformation (DTFT) Question

Discussion in 'Homework Help' started by Inquirer, Oct 29, 2012.

  1. Inquirer

    Thread Starter New Member

    Oct 29, 2012
    2
    0
    Hello all :)

    I have the following problem.

    I have to calculate the DTFT of this : x(n)=u(n)-u(n-4).

    So far , from what I have studied I have understood, that DTFT , is actually many DFT's calculated for different omega values lets say in an interval from -pi to pi , with step 0.2 .

    Is this so far correct ?

    we know that (it is proven) x(n) = 1

    So finally have this:
    [​IMG]


    Now my main problem, how can I continue from that step ? Am I supposed to get some arithmetic result ?

    Thanks for you help !
     
  2. blah2222

    Well-Known Member

    May 3, 2010
    554
    33
    If you plot out x[n] you get a step function that lasts from n = 0 to n = 3 where it holds the value of '1' and is '0' everywhere else. This simplifies the expression:

    <br />
X(\omega) = \sum_{n=-\infty}^{\infty}x[n]e^{-jwn}<br />
<br />
X(\omega) = \sum_{n=0}^{3}(1)e^{-jwn}<br />
<br />
X(\omega) = 1 + e^{-j\omega} + e^{-j2\omega} + e^{-j3\omega}<br />

    Plotting the magnitude of X(w) in MATLAB (-4pi:4pi) an infinite response:
     
Loading...