compare mode is not working in pic18f45k50 for 50Hz frequency genaration

Discussion in 'Embedded Systems and Microcontrollers' started by Nanda Kumar 1, Sep 26, 2016.

  1. Nanda Kumar 1

    Thread Starter Member

    Aug 25, 2016
    37
    0
    Hi to every one I'm generating the 50 Hz frequency pulses using compare mode but code is excuting correctly but its not working .Here is my code .

    #define _XTAL_FREQ 24000000 // set crystal oscillator to 20MHz.
    #define TMR1PRESCALE 8

    #include <htc.h>
    #include <pic18.h>


    //#define OUT RC1 // use the name OUT for RC2 pin.
    void ms_delay(unsigned int delay);
    void ECCP1_Initialize(void);

    #include <xc.h>

    // CONFIG1L
    #pragma config PLLSEL = PLL4X // PLL Selection (4x clock multiplier)
    #pragma config CFGPLLEN = OFF // PLL Enable Configuration bit (PLL Disabled (firmware controlled))
    #pragma config CPUDIV = NOCLKDIV// CPU System Clock Postscaler (CPU uses system clock (no divide))
    #pragma config LS48MHZ = SYS24X4// Low Speed USB mode with 48 MHz system clock (System clock at 24 MHz, USB clock divider is set to 4)

    // CONFIG1H
    #pragma config FOSC = HSH // Oscillator Selection (HS oscillator, high power 16MHz to 25MHz)
    #pragma config PCLKEN = ON // Primary Oscillator Shutdown (Primary oscillator enabled)
    #pragma config FCMEN = OFF // Fail-Safe Clock Monitor (Fail-Safe Clock Monitor disabled)
    #pragma config IESO = OFF // Internal/External Oscillator Switchover (Oscillator Switchover mode disabled)

    // CONFIG2L
    #pragma config nPWRTEN = OFF // Power-up Timer Enable (Power up timer disabled)
    #pragma config BOREN = SBORDIS // Brown-out Reset Enable (BOR enabled in hardware (SBOREN is ignored))
    #pragma config BORV = 190 // Brown-out Reset Voltage (BOR set to 1.9V nominal)
    #pragma config nLPBOR = OFF // Low-Power Brown-out Reset (Low-Power Brown-out Reset disabled)

    // CONFIG2H
    #pragma config WDTEN = ON // Watchdog Timer Enable bits (WDT enabled in hardware (SWDTEN ignored))
    #pragma config WDTPS = 32768 // Watchdog Timer Postscaler (1:32768)

    // CONFIG3H
    #pragma config CCP2MX = RC1 // CCP2 MUX bit (CCP2 input/output is multiplexed with RC1)
    #pragma config PBADEN = ON // PORTB A/D Enable bit (PORTB<5:0> pins are configured as analog input channels on Reset)
    #pragma config T3CMX = RC0 // Timer3 Clock Input MUX bit (T3CKI function is on RC0)
    #pragma config SDOMX = RB3 // SDO Output MUX bit (SDO function is on RB3)
    #pragma config MCLRE = ON // Master Clear Reset Pin Enable (MCLR pin enabled; RE3 input disabled)

    // CONFIG4L
    #pragma config STVREN = ON // Stack Full/Underflow Reset (Stack full/underflow will cause Reset)
    #pragma config LVP = ON // Single-Supply ICSP Enable bit (Single-Supply ICSP enabled if MCLRE is also 1)
    #pragma config ICPRT = OFF // Dedicated In-Circuit Debug/Programming Port Enable (ICPORT disabled)
    #pragma config XINST = OFF // Extended Instruction Set Enable bit (Instruction set extension and Indexed Addressing mode disabled)

    // CONFIG5L
    #pragma config CP0 = OFF // Block 0 Code Protect (Block 0 is not code-protected)
    #pragma config CP1 = OFF // Block 1 Code Protect (Block 1 is not code-protected)
    #pragma config CP2 = OFF // Block 2 Code Protect (Block 2 is not code-protected)
    #pragma config CP3 = OFF // Block 3 Code Protect (Block 3 is not code-protected)

    // CONFIG5H
    #pragma config CPB = OFF // Boot Block Code Protect (Boot block is not code-protected)
    #pragma config CPD = OFF // Data EEPROM Code Protect (Data EEPROM is not code-protected)

    // CONFIG6L
    #pragma config WRT0 = OFF // Block 0 Write Protect (Block 0 (0800-1FFFh) is not write-protected)
    #pragma config WRT1 = OFF // Block 1 Write Protect (Block 1 (2000-3FFFh) is not write-protected)
    #pragma config WRT2 = OFF // Block 2 Write Protect (Block 2 (04000-5FFFh) is not write-protected)
    #pragma config WRT3 = OFF // Block 3 Write Protect (Block 3 (06000-7FFFh) is not write-protected)

    // CONFIG6H
    #pragma config WRTC = OFF // Configuration Registers Write Protect (Configuration registers (300000-3000FFh) are not write-protected)
    #pragma config WRTB = OFF // Boot Block Write Protect (Boot block (0000-7FFh) is not write-protected)
    #pragma config WRTD = OFF // Data EEPROM Write Protect (Data EEPROM is not write-protected)

    // CONFIG7L
    #pragma config EBTR0 = OFF // Block 0 Table Read Protect (Block 0 is not protected from table reads executed in other blocks)
    #pragma config EBTR1 = OFF // Block 1 Table Read Protect (Block 1 is not protected from table reads executed in other blocks)
    #pragma config EBTR2 = OFF // Block 2 Table Read Protect (Block 2 is not protected from table reads executed in other blocks)
    #pragma config EBTR3 = OFF // Block 3 Table Read Protect (Block 3 is not protected from table reads executed in other blocks)

    // CONFIG7H
    #pragma config EBTRB = OFF // Boot Block Table Read Protect (Boot block is not protected from table reads executed in other blocks)
    // variables and constants declarations
    unsigned long CCPR = 0; // holds the value needed to be put in CCP's registers.
    unsigned long current_period = 0; // holds the period that timer1 will use.
    const unsigned long total_period = 12500; // 20ms for 50hz frequency.


    // interrupt service routine
    void interrupt tmr1isr () {
    if (PIR2bits.CCP2IF == 1) { // if CCP compare interrupt flag is set
    PIR2bits.CCP2IF = 0; // reset CCP2 interrupt flag.



    if ((current_period > 0) && (current_period < total_period)){ // if duty is > 0% AND < 100% then:

    if (PORTCbits.RC1== 1) { // if the output was 1 -> was "on-time".
    PORTCbits.RC1 = 0; // set output to 0 in order to achieve "off-time".
    CCPR = total_period - current_period; // make it time for "off-time", off-time = full time - on time.
    }

    else { // if the output was 0 -> was "off-time".
    PORTCbits.RC1 = 1; // set output to 1 in order to achieve "on-time"
    CCPR = current_period; // make it time for "on-time".
    }
    }
    else {
    if (current_period == total_period) { PORTCbits.RC1== 1;} // if duty = 100%, then output 1 all the time.
    if (current_period == 0) {PORTCbits.RC1== 0;} // if duty = 0%, then output 0 all the time.
    }


    // now set the value of CCPR into CCP module's registers:

    CCPR2H = CCPR >> 8; // right-shift CCPR by 8 then load it into CCPR1H register (load higher byte).
    CCPR2L = CCPR; // put the lower byte of CCPR in CCPR1L register.

    }
    }


    // main function:
    void main()
    {
    ANSELA=0X00;
    ANSELB=0X00;
    ANSELC=0X00;
    ANSELD=0X00;
    TRISC=0X00;
    TRISB=0X00;
    PORTB=0X00;
    PORTC=0X00;
    TRISB= 0x00; // port c is output.
    PORTB=0X00;
    ECCP1_Initialize( );

    while (1)
    { // infinite loop.
    PORTBbits.RB7 = 1;
    __delay_ms(5);
    PORTBbits.RB7 = 0;
    __delay_ms(5);
    // TEST CODE...
    current_period = total_period * 0.06;
    ms_delay(200);
    current_period = total_period * 0.1;
    current_period = total_period * 0.2;
    ms_delay(200);
    current_period = total_period * 0.3;
    ms_delay(200);
    current_period = total_period * 0.4;
    ms_delay(200);
    current_period = total_period * 0.5;

    }
    }
    void ms_delay(unsigned int delay)
    {
    unsigned int delayinms;
    for(delayinms=0;delayinms<delay;delayinms++)
    {
    __delay_ms(10);
    }

    }

    void ECCP1_Initialize(void)
    {


    INTCONbits.GIE = 1;// INTCON = 0xC0; // enable global and peripheral interrupt.
    INTCONbits.PEIE = 1;

    CCP2CON = 0x0B;

    // CCPR1L 0;
    CCPR1L = 0x00;

    // CCPR1H 0;
    CCPR1H = 0x00;


    PIR2bits.CCP2IF = 0; // clear CCP1 interrupt flag.
    // Enable the ECCP1 interrupt
    PIE2bits.CCP2IE = 1;

    // Selecting Timer1
    CCPTMRSbits.C1TSEL = 0x0;
    T1GCON = 0x00;


    TMR1H = 0x00; // timer1 registers have 0 (clear).
    TMR1L = 0x00;
    // Set the ECCP1 to the options selected in the User Interface
    PIR1bits.TMR1IF = 0;

    // Enabling TMR1 interrupt.
    PIE1bits.TMR1IE = 1;


    // CCP1M Special Event Trigger; DC1B 0; P1M single;

    T1CON = 0X33; // start timer1 with the same settings like before.
    }
     
  2. jayanthd

    Member

    Jul 4, 2015
    265
    27
    Edit your post and use code tags for posting the code.

    You can also use code=c at the top of the code inside square brackets. See attached image.
     
Loading...